Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 806
Filtrar
1.
Fish Shellfish Immunol ; 148: 109525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537926

RESUMO

Serine protease inhibitors Kazal type (SPINKs) function in physiological and immunological processes across multicellular organisms. In the present study, we identified a SPINK gene, designated as CqSPINK, in the red claw crayfish Cherax quadricarinatus, which is the ortholog of human SPINK5. The deduced CqSPINK contains two Kazal domains consisting of 45 amino acid residues with a typical signature motif C-X3-C-X5-PVCG-X5-Y-X3-C-X6-C-X12-14-C. Each Kazal domain contains six conserved cysteine residues forming three pairs of disulfide bonds, segmenting the structure into three rings. Phylogenetic analysis revealed CqSPINK as a homolog of human SPINK5. CqSPINK expression was detected exclusively in hepatopancreas and epithelium, with rapid up-regulation in hepatopancreas upon Vibrio parahaemolyticus E1 challenge. Recombinant CqSPINK protein (rCqSPINK) was heterologously expressed in Escherichia coli and purified for further study. Proteinase inhibition assays demonstrated that rCqSPINK could potently inhibit proteinase K and subtilisin A, weakly inhibit α-chymotrypsin and elastase, but extremely weak inhibit trypsin. Furthermore, CqSPINK inhibited bacterial secretory proteinase activity from Bacillus subtilis, E. coli, and Staphylococcus aureus, and inhibited B. subtilis growth. These findings suggest CqSPINK's involvement in antibacterial immunity through direct inhibition of bacterial proteases, contributing to resistance against pathogen invasion.


Assuntos
Astacoidea , Inibidores de Serino Proteinase , Humanos , Animais , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/química , Filogenia , Escherichia coli , Proteínas Recombinantes/genética , Bactérias/metabolismo
2.
Mar Biotechnol (NY) ; 26(1): 37-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38117374

RESUMO

Serine protease inhibitors (SPIs) are abundantly reported for its inhibition against specific proteases involved in the immune responses, but SPI data related to calcareous shells are scarce. Previously, our research group has reported the proteome analysis of non-nucleated pearl powder, and a candidate matrix protein containing two Kunitz domains in the acid soluble fraction caught our attention. In the present study, the full-length cDNA sequence of HcKuSPI was obtained from Hyriopsis cumingii. HcKuSPI was specifically expressed in the mantle, with hybridization signals mainly concentrated to dorsal epithelial cells at the mantle edge and weak signals at the mantle pallium, suggesting HcKuSPI was involved in shell formation. HcKuSPI expression in the mantle was upregulated after Aeromonas hydrophila and Staphylococcus aureus challenge to extrapallial fluids (EPFs). A glutathione S transferase (GST)-HcKuSPI recombinant protein showed strong inhibitory activity against the proteases, trypsin and chymotrypsin. Moreover, HcKuSPI expression in an experimental group was significantly higher when compared with a control group during pellicle growth and crystal deposition in shell regeneration processes, while the organic shell framework of newborn prisms and nacre tablets was completely destroyed after HcKuSPI RNA interference (RNAi). Therefore, HcKuSPI secreted by the mantle may effectively neutralize excess proteases and bacterial proteases in the EPF during bacterial infection and could prevent matrix protein extracellular degradation by suppressing protease proteolytic activity, thereby ensuring a smooth shell biomineralization. In addition, GST-HcKuSPI was also crucial for crystal morphology regulation. These results have important implications for our understanding of the potential roles of SPIs during shell biomineralization.


Assuntos
Inibidores de Serino Proteinase , Unionidae , Animais , Humanos , Recém-Nascido , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/metabolismo , Unionidae/genética , Unionidae/metabolismo , Imunidade Inata/genética , Antibacterianos/metabolismo , Peptídeo Hidrolases/metabolismo
3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003538

RESUMO

Serine protease inhibitors (serpins) appear to be ubiquitous in almost all living organisms, with a conserved structure and varying functions. Serpins can modulate immune responses by negatively regulating serine protease activities strictly and precisely. The codling moth, Cydia pomonella (L.), a major invasive pest in China, can cause serious economic losses. However, knowledge of serpin genes in this insect remain largely unknown. In this study, we performed a systematic analysis of the serpin genes in C. pomonella, obtaining 26 serpins from the C. pomonella genome. Subsequently, their sequence features, evolutionary relationship, and expression pattern were characterized. Comparative analysis revealed the evolution of a number of serpin genes in Lepidoptera. Importantly, the evolutionary relationship and putative roles of serpin genes in C. pomonella were revealed. Additionally, selective pressure analysis found amino acid sites with strong evidence of positive selection. Interestingly, the serpin1 gene possessed at least six splicing isoforms with distinct reactive-center loops, and these isoforms were experimentally validated. Furthermore, we observed a subclade expansion of serpins, and these genes showed high expression in multiple tissues, suggesting their important roles in C. pomonella. Overall, this study will enrich our knowledge of the immunity of C. pomonella and help to elucidate the role of serpins in the immune response.


Assuntos
Mariposas , Serpinas , Animais , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/farmacologia , Serpinas/genética , Serpinas/química , Mariposas/genética , Insetos , Isoformas de Proteínas
4.
Infect Immun ; 91(11): e0010323, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37874164

RESUMO

In eukaryotes, autophagy is induced as an innate defense mechanism against pathogenic microorganisms by self-degradation. Although trichinellosis is a foodborne zoonotic disease, there are few reports on the interplay between Trichinella spiralissurvival strategies and autophagy-mediated host defense. Therefore, this study focused on the association between T. spiralis and autophagy of host small intestinal cells. In this study, the autophagy-related indexes of host small intestinal cells after T. spiralis infection were detected using transmission electron microscopy, hematoxylin and eosin staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting. The results showed that autophagosomes and autolysosomes were formed in small intestinal cells, intestinal villi appeared edema, epithelial compactness was decreased, microtubule-associated protein 1A/1B-light chain 3B (LC3B) was expressed in lamina propria stromal cells of small intestine, and the expression of autophagy-related genes and proteins was changed significantly, indicating that T. spiralis induced autophagy of host small intestinal cells. Then, the effect of T. spiralis on autophagy-related pathways was explored by Western blotting. The results showed that the expression of autophagy-related pathway proteins was changed, indicating that T. spiralis regulated autophagy by affecting autophagy-related pathways. Finally, the roles of T. spiralis serine protease inhibitors (TsSPIs), such as T. spiralis Kazal-type SPI (TsKaSPI) and T. spiralis Serpin-type SPI (TsAdSPI), were further discussed in vitro and in vivo experiments. The results revealed that TsSPIs induced autophagy by influencing autophagy-related pathways, and TsAdSPI has more advantages. Overall, our results indicated that T. spiralis induced autophagy of host small intestinal cells, and its TsSPIs play an important role in enhancing autophagy flux by affecting autophagy-related pathways. These findings lay a foundation for further exploring the pathogenesis of intestinal dysfunction of host after T. spiralis infection, and also provide some experimental and theoretical basis for the prevention and treatment of trichinellosis.


Assuntos
Trichinella spiralis , Triquinelose , Animais , Camundongos , Trichinella spiralis/genética , Trichinella spiralis/metabolismo , Triquinelose/metabolismo , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/metabolismo , Intestino Delgado , Autofagia , Camundongos Endogâmicos BALB C
5.
Biochim Biophys Acta Gen Subj ; 1867(1): 130248, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191739

RESUMO

BACKGROUND: Proteinase inhibitors are important for the regulation of the activity of enzymes essential for the survival and maintenance of all organisms, and they may hold medicinal and agricultural value. Hyacinthus orientalis L. serine protease inhibitors (HOSPIs), belonging to the Bowman-Birk type inhibitor (BBI) family, have strong inhibitory activities against mammalian serine proteinases. This study explored the relationship between gene structure and multiple isoinhibitor production of these diversified BBIs by analyzing sequences of HOSPI precursor genes. METHODS: Genomic DNA of H. orientalis roots was obtained and fragmented using 13 specific restriction enzymes, which were amplified by inverse and nested polymerase chain reactions, cloned into the pBluescript II SK (+) vector, and directly sequenced using specific primers. HOSPI gene and protein expression were assessed by quantitative real-time PCR and western blot, respectively. Proteinase inhibitory activity of hyacinth bulb extracts was evaluated by fluorescein isothiocyanate-labeled casein. RESULTS: Four distinct HOSPI precursor genes were identified, encoding 2-4 different HOSPI domains that were surrounded by additional sequences (named head, linker, and tail sequences) and some introns. Moreover, 3' splicing of the linker sequence may occur through introns inserted between linker sequences. HOSPI gene and protein expression was higher during the stem elongation and the flowering periods. CONCLUSIONS: These results indicate that gene duplication of the HOSPI precursor as a single set, including tandem repeated HOSPI domains, leads to diversity and effective production of mature HOSPIs by posttranslational processing. GENERAL SIGNIFICANCE: These findings shed light on the diversity of proteinase inhibitors.


Assuntos
Peptídeo Hidrolases , Inibidores de Serino Proteinase , Animais , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/farmacologia , Sequência de Aminoácidos , Íntrons , Mamíferos
6.
Mol Biol Rep ; 50(1): 299-308, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331747

RESUMO

BACKGROUND: Kazal-type serine protease inhibitors play a role in physiological processes such as blood coagulation and fibrinolysis. The amino acid residues at the P1 site are different, and they inhibit different types of proteases. The inhibitory mechanism of the protease in the salivary glands of Poecilobdella manillensis is still unclear. METHODS AND RESULTS: Based on cloning, prokaryotic expression and bioinformatics analysis, we studied the role of Kazal-type serine protease inhibitors in P. manillensis and analyzed their expression by quantitative real-time PCR. The results suggested that the recombinant protein was successfully expressed in the supernatant when a prokaryotic expression vector was constructed and induced with 0.2 mmol/L IPTG at 37 °C for 4 h, and the enzymatic activity was determined. The mature protein encodes 91 amino acids and has a relative molecular weight of 9929.32 Da, and after removing the signal peptide, the theoretical isoelectric point was 8.79. It is an unstable protein without a transmembrane domain. The mature protein contains two Kazal-type domains, in which all P1 residues are Lys, consisting of an α helix and three antiparallel ß sheets. The upregulated expression of the mRNA was induced after a meal was provided, and the results showed an increasing and then decreasing trend. CONCLUSIONS: Taken together, the results indicate that mature proteins from P. manillensis inhibit thrombin activity, laying the foundation for the subsequent in-depth study of the function of genes encoding Kazal-type serine protease inhibitors.


Assuntos
Inibidores de Serino Proteinase , DNA Complementar/genética , Proteínas Recombinantes/genética , Domínios Proteicos , Inibidores de Serino Proteinase/genética , Clonagem Molecular
7.
Parasitol Res ; 122(1): 245-255, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36376587

RESUMO

Serpins represent one of the most diverse families of serine protease inhibitors. Despite their complexity, they are virtually found in all organisms and play an important role in homeostasis processes such as blood coagulation, inflammation, fibrinolysis, immune responses, chromatin condensation, tumor suppression, and apoptosis. There has recently been particular interest in studying serpin functions in infection and inflammation, especially since more serpins from parasites have been identified and characterized. Among helminths, Trichinella spiralis is one of the few parasites with an extremely strong ability to induce host immune suppression. Previous studies show that serpins are present in Trichinella and are expressed differentially at different parasite stages. More interesting, there is evidence of a recombinant serpin from Trichinella pseudospiralis that alters macrophage polarization in vitro. This finding could be relevant to comprehend the modulation process of the immune response. We expressed Tsp_01570, a putative serpin gene from Trichinella spiralis, in the eukaryotic system Pichia pastoris SMD1168H and evaluated its presence at different parasite stages, finding the serine protease inhibitor in the crude extract of adult worms. The effect of recombinant serpin on THP-1 cells was tested by quantification of IL-12p40, TNF-α, IL-4, and IL-10 cytokines released by ELISA. We also evaluated the expression of the M1 markers, CCR7 and CD86, and the M2 markers, CD163 and CD206, by immunofluorescence staining. This study represents the first insight in elucidating the importance of serpin Tsp_01570 as a potential molecular modulator.


Assuntos
Saccharomycetales , Serpinas , Trichinella spiralis , Trichinella , Triquinelose , Animais , Serpinas/genética , Serpinas/metabolismo , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/farmacologia , Inibidores de Serino Proteinase/metabolismo , Inflamação , Triquinelose/parasitologia
8.
Oncoimmunology ; 11(1): 2139074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465485

RESUMO

Immunotherapies, in particular immune checkpoint blockade (ICB), have improved the clinical outcome of cancer patients, although many fail to mount a durable response. Several resistance mechanisms have been identified, but our understanding of the requirements for a robust ICB response is incomplete. We have engineered an MHC I/antigen: TCR-matched panel of human NSCLC cancer and T cells to identify tumor cell-intrinsic T cell resistance mechanisms. The top differentially expressed gene in resistant tumor cells was SERPINB9. This serine protease inhibitor of the effector T cell-derived molecule granzyme B prevents caspase-mediated tumor apoptosis. Concordantly, we show that genetic ablation of SERPINB9 reverts T cell resistance of NSCLC cell lines, whereas its overexpression reduces T cell sensitivity. SERPINB9 expression in NSCLC strongly correlates with a mesenchymal phenotype. We also find that SERPINB9 is commonly amplified in cancer, particularly melanoma in which it is indicative of poor prognosis. Single-cell RNA sequencing of ICB-treated melanomas revealed that SERPINB9 expression is elevated not only in cells from post- versus pre-treatment cancers, but also in ICB-refractory cancers. In NSCLC we commonly observed rare SERPINB9-positive cancer cells, possibly accounting for reservoirs of ICB-resistant cells. While underscoring SERPINB9 as a potential target to combat immunotherapy resistance, these results suggest its potential to serve as a prognostic and predictive biomarker.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Neoplasias , Serpinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Serino Proteinase/genética , Serpinas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Cutâneas , Neoplasias/genética
9.
Biochem Biophys Res Commun ; 628: 25-31, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36063599

RESUMO

α-1-antichymotrypsin (ACT) is a serine proteinase inhibitor that controls the activity of proteases like chymotrypsin, cathepsin G and mast cell chymase. Familial variants of ACT results in liver and lung diseases, but it is also reported to be associated with several other disease conditions. ACT is mainly synthesized in the liver using four coding exons, namely E1, E2, E3 and E4 encoding a 423 amino acid protein that also includes a 23 amino acid signal peptide. It is found to be associated with amyloid plaques and is elevated during inflammatory response and modulates cytokine based signal transduction pathways, independent of its anti-protease activity. Therefore, the multispecificity of ACT and its non-inhibitory roles in diseased conditions warrants an assessment of possible existence of the other isoforms. Consequently, scanning of introns, 5' and 3' region of the ACT gene using computational tools like FGENESH and FEX did indicate the presence of coding regions. Using a combined approach of bioinformatics and molecular biology, we have found one novel exon located in the intronic region between exons E1 and E2, that splices with exon E2 and replaces N-terminal exon E1, generating an ACT isoform with a novel 151 base pair N-terminus. This isoform was found to lack the signal sequence and is smaller in size but its reactive centre loop remains intact. A truncated transcript was also confirmed with an extension of the E3 by a 12 nucleotide intronic region including a stop codon. Modelling studies show that due to removal of E4 this isoform lacks the RCL. Novel isoform ACT-N lacks E1 but has a conserved RCL. However, due to loss of strands of ß-sheet A, it may also be inactive, but with ability to bind the target proteases. The novel truncated ACT-T isoform lacks the RCL and may have a non-inhibitory role. These hypothesis will need further work for functional validation.


Assuntos
Inibidores de Serino Proteinase , Processamento Alternativo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Catepsina G/metabolismo , Quimases/metabolismo , Quimotripsina/metabolismo , Códon de Terminação , Citocinas/metabolismo , Humanos , Nucleotídeos/metabolismo , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Inibidores de Serino Proteinase/genética , Serpinas
10.
Arch Insect Biochem Physiol ; 111(3): e21948, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35749627

RESUMO

Serine protease inhibitors (SPIs) act in diverse biological processes in insects such as immunity, development, and digestion by preventing the unwanted proteolysis. So far, the repertoire of genes encoding SPIs has been identified from few insect species. In this study, 62 SPI genes were identified from the genome of the yellow mealworm, Tenebrio molitor. According to their modes of action, they were classified into three families, serpin (26), canonical SPI (31), and α-macroglobulins (A2M) (5). These SPIs feature eight domains including serpin, Kazal, TIL, Kunitz, WAP, Antistasin, pacifastin, and A2M. In total, 39 SPIs contain a single SPI domain, while the others encode at least two inhibitor units. Based on the amino acids in the cleaved reactive sites, the abilities of these SPIs to inhibit trypsin, chymotrypsin, or elastase-like enzymes are predicted. The expression profiling based on the RNA-seq data showed that these genes displayed stage-specific expression patterns during development, suggesting to us their significance in development. Some of the SPI genes were exclusively expressed in particular tissues such as hemocyte, fat body, gut, ovary, and testis, which may be involved in biological processes specific to the indicated tissues. These findings provide necessary information for further investigation of insect SPIs.


Assuntos
Serpinas , Tenebrio , Sequência de Aminoácidos , Aminoácidos , Animais , Quimotripsina , Feminino , Masculino , Elastase Pancreática/metabolismo , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/metabolismo , Serpinas/genética , Tripsina/metabolismo , alfa-Macroglobulinas
11.
Dev Comp Immunol ; 135: 104478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716829

RESUMO

In bee venoms, low-molecular-weight peptides, including serine protease inhibitors (SPIs), exhibit multifunctional activities. Although SPIs in bee venoms are relatively well known, those that function in both the body and secreted venom of bees are not well-characterized. In this study, we identified a bumblebee (Bombus ignitus) SPI (BiSPI) that displays microbicidal and anti-fibrinolytic activities. BiSPI was found to consist of a trypsin inhibitor-like domain containing a P1 site and ten cysteine residues. We observed that the BiSPI gene was ubiquitously transcribed in the body, including the venom glands. In correlation, the BiSPI protein was detected both in the body and secreted venom by using an antibody against a recombinant BiSPI peptide produced in baculovirus-infected insect cells. Recombinant BiSPI exhibited inhibitory activity against trypsin but not chymotrypsin and inhibited microbial serine proteases and plasmin but not elastase or thrombin. Moreover, recombinant BiSPI recognized carbohydrates and bound to fungi and gram-negative and gram-positive bacteria. Consistent with these properties, recombinant BiSPI exhibited microbicidal activities against bacteria and fungi through induction of structural damage by binding to the microbial surfaces. Additionally, recombinant BiSPI inhibited the plasmin-mediated degradation of human fibrin and was thus concluded to exhibit anti-fibrinolytic activity. Moreover, the peptide showed no effect on hemolysis. These findings demonstrate the dual function of BiSPI, which acts as a microbicidal peptide and anti-fibrinolytic venom toxin.


Assuntos
Anti-Infecciosos , Venenos de Abelha , Serpinas , Animais , Anti-Infecciosos/metabolismo , Antivenenos/genética , Venenos de Abelha/metabolismo , Abelhas/genética , Clonagem Molecular , Fibrinolisina , Fungos , Humanos , Elastase Pancreática , Peptídeos/genética , Proteínas Recombinantes/genética , Inibidores de Serino Proteinase/genética , Serpinas/genética
12.
Toxins (Basel) ; 14(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324668

RESUMO

PIVL is a Kunitz-type serine protease inhibitor that was previously characterized from Tunisian snake venom, Macrovipera lebetina transmediterranea. It reduced glioblastoma cells' development and significantly blocked angiogenesis in in-vitro and ex-vivo models. PIVL exerted these effects by interfering with αvß3 integrin. In order to produce a biological active recombinant, the cDNA cloning and expression of PIVL was performed in Escherichia coli (BL21)-DE3 cells using pET-22b (+) vector. The recombinant PIVL protein (rPIVL) was purified by nickel affinity chromatography and has recognized monoclonal anti-His antibody. Functionally, rPIVL exhibited potent anti-tumor cell effects as well as anti-angiogenesis properties. Interestingly, we found that both native PIVL (nPIVL) and rPIVL modulated PI3/AKT and MAPK signaling pathways. In all, our results showed that we have successfully expressed the first active anti-oncogenic snake venom Kunitz-type protease inhibitor that can be a potential therapeutic drug against glioblastoma, in its native or recombinant form.


Assuntos
Antivenenos , Glioblastoma , Glioblastoma/tratamento farmacológico , Humanos , Serina , Inibidores de Serino Proteinase/química , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/farmacologia , Venenos de Serpentes
13.
Vet Res ; 53(1): 18, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241168

RESUMO

The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum can cause an endoplasmic reticulum stress (ERS) response. If ERS continues or cannot be alleviated, it will cause the production of proapoptotic factors and eventually lead to apoptosis. Therefore, this study mainly explored whether Trichinella spiralis Kazal-type serine protease inhibitor (TsKaSPI) contributed to the invasion of intestinal epithelial cells during the infectious stage of T. spiralis by regulating ERS. First, in the T. spiralis infection model, H&E staining was used to analyse the damage to jejunum tissue, a TUNEL assay was used to examine cell apoptosis, and the expression of ERS-related and apoptosis-related molecules was also measured. The results showed that ERS occurred during the intestinal phase of T. spiralis infection, while remission began during the cyclic phase. Then, we selected TsKaSPI, one of the important components of T. spiralis ES antigens, for in vitro experiments. The results showed that TsKaSPI could induce apoptosis in a porcine small intestinal epithelial cell line (IPEC cells) by activating ERS and promote activation of the NF-κB signalling pathway. Inhibition experiments confirmed that the occurrence of ERS was accompanied by the activation of NF-κB, and the two processes regulated each other. Finally, we conducted in vivo experiments and administered TsKaSPI to mice. The results confirmed that TsKaSPI could activate ERS and lead to apoptosis in intestinal epithelial cells. In conclusion, T. spiralis infection and TsKaSPI can promote cell apoptosis by activating the ERS response in intestinal epithelial cells and activate the NF-κB signalling pathway to promote the occurrence and development of inflammation.


Assuntos
Trichinella spiralis , Animais , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Intestinos , Camundongos , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/metabolismo , Suínos
14.
S D Med ; 75(12): 554-556, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36893349

RESUMO

Netherton syndrome (NS) is a rare autosomal recessive condition caused by mutations in the serine peptidase inhibitor, Kazal type 5 (SPINK5) gene which encodes for a serine protease inhibitor, lymphoepithelial Kazal-typerelated inhibitor (LEKT1). NS is characterized by a triad of ichthyosiform erythroderma, trichorrhexis invaginata, and atopic diathesis with elevated IgE levels. The syndrome typically presents in infancy, where life-threatening complications are frequent, and evolves into a less severe condition with milder clinical symptoms in adulthood. This case report details the clinical history and genetic testing of a mother and two children with clinically symptomatic and genetically proven NS.


Assuntos
Eritrodermia Ictiosiforme Congênita , Síndrome de Netherton , Humanos , Criança , Feminino , Síndrome de Netherton/complicações , Síndrome de Netherton/diagnóstico , Síndrome de Netherton/genética , Mães , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Eritrodermia Ictiosiforme Congênita/genética , Mutação , Inibidores de Serino Proteinase/genética
15.
Braz. j. biol ; 81(3): 516-525, July-Sept. 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1153413

RESUMO

Abstract Serine protease inhibitors (serpins), a superfamily of protease inhibitors, are known to be involved in several physiological processes, such as development, metamorphosis, and innate immunity. In our study, a full-length serpin cDNA, designated Haserpin1, was isolated from the cotton bollworm Helicoverpa armigera. The cDNA sequence of Haserpin1 is 1176 nt long, with an open reading frame encoding 391 amino acids; there is one exon and no intron. The predicted molecular weight of Haserpin1 is 43.53 kDa, with an isoelectric point of 4.98. InterProScan was employed for Haserpin1 functional characterization, which revealed that Haserpin1 contains highly conserved signature motifs, including a reactive center loop (RCL) with a hinge region (E341-N350), the serpin signature, (F367-F375) and a predicted P1-P1′ cleavage site (L357-S358), which are useful for identifying serpins. Transcripts of Haserpin1 were constitutively expressed in the fat body, suggesting that it is the major site for serpin synthesis. During the developmental stages, a fluctuation in the expression level of Haserpin1 was observed, with low expression detected at the 5th-instar larval stage. In contrast, relatively high expression was detected at the prepupal stage, suggesting that Haserpin1 might play a critical role at the H. armigera wandering stage. Although the detailed function of this serpin (Haserpin1) needs to be elucidated, our study provides a perspective for the functional investigation of serine protease inhibitor genes.


Resumo Sabe-se que os inibidores de serina protease (serpinas), uma superfamília de inibidores de protease, estão envolvidos em vários processos fisiológicos, como desenvolvimento, metamorfose e imunidade inata. Neste estudo, um cDNA de serpina de comprimento total, denominado Haserpin1, foi isolado da lagarta Helicoverpa armigera na cultura de algodão. A sequência de ADNc de Haserpin1 tem 1.176 nt de comprimento, com uma grelha de leitura aberta que codifica 391 aminoácidos; existe um éxon, mas nenhum íntron. O peso molecular previsto de Haserpin1 é de 43,53 kDa, com um ponto isoelétrico de 4,98. O InterProScan foi empregado para a caracterização funcional do Haserpin1, que revelou que o Haserpin1 contém motivos de assinatura altamente conservados, incluindo um loop central reativo (RCL) com uma região de dobradiça (E341-N350), a assinatura da serpina (F367-F375) e um local de clivagem previsto de P1-P1' (L357-S358), que são úteis para identificar serpinas. As transcrições de Haserpin1 foram expressas constitutivamente no corpo gordo, sugerindo que é o principal local para a síntese de serpinas. Durante os estágios de desenvolvimento, observou-se uma flutuação no nível de expressão de Haserpin1, com baixa expressão detectada no estágio larval do 5º ínstar. Por outro lado, detectou-se uma expressão relativamente alta no estágio pré-pupal, sugerindo que o Haserpin1 pode desempenhar um papel crítico no estágio errante de H. armigera. Embora a função detalhada dessa serpina (Haserpin1) precise ser elucidada, este estudo fornece uma perspectiva para a investigação funcional dos genes inibidores da serina protease.


Assuntos
Animais , Serpinas/genética , Lepidópteros/genética , Mariposas/genética , Inibidores de Serino Proteinase/genética , Sequência de Aminoácidos , Larva/genética
16.
BMC Plant Biol ; 21(1): 267, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107869

RESUMO

BACKGROUND: Serine protease inhibitors belonging to the Potato type-II Inhibitor family Protease Inhibitors (Pin-II type PIs) are essential plant defense molecules. They are characterized by multiple inhibitory repeat domains, conserved disulfide bond pattern, and a tripeptide reactive center loop. These features of Pin-II type PIs make them potential molecules for protein engineering and designing inhibitors for agricultural and therapeutic applications. However, the diversity in these PIs remains unexplored due to the lack of annotated protein sequences and their functional attributes in the available databases. RESULTS: We have developed a database, PINIR (Pin-II type PIs Information Resource), by systematic collection and manual annotation of 415 Pin-II type PI protein sequences. For each PI, the number and position for signature sequences are specified: 695 domains, 75 linkers, 63 reactive center loops, and 10 disulfide bond patterns are identified and mapped. Database analysis revealed novel subcategories of PIs, species-correlated occurrence of inhibitory domains, reactive center loops, and disulfide bond patterns. By analyzing linker regions, we predict that alternative processing at linker regions could generate PI variants in the Solanaceae family. CONCLUSION: PINIR ( https://pinir.ncl.res.in ) provides a web interface for browsing and analyzing the protein sequences of Pin-II type PIs. Information about signature sequences, spatio-temporal expression, biochemical properties, gene sequences, and literature references are provided. Analysis of PINIR depicts conserved species-specific features of Pin-II type PI protein sequences. Diversity in the sequence of inhibitory domains and reactive loops directs potential applications to engineer Pin-II type PIs. The PINIR database will serve as a comprehensive information resource for further research into Pin-II type PIs.


Assuntos
Sequência de Aminoácidos , Bases de Dados como Assunto , Resistência à Doença/genética , Genes de Plantas , Proteínas de Plantas/genética , Inibidores de Serino Proteinase/genética
17.
PLoS Negl Trop Dis ; 15(6): e0009526, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153047

RESUMO

Trypanosoma brucei rhodesiense is one of the causative agents of Human African Trypanosomiasis (HAT), known as sleeping sickness. The parasite invades the central nervous system and causes severe encephalitis that is fatal if left untreated. We have previously identified ecotin-like inhibitors of serine peptidases, named ISPs, in trypanosomatid parasitic protozoa. Here, we investigated the role of ISP2 in bloodstream form T. b. rhodesiense. We generated gene-deficient mutants lacking ISP2 (Δisp2), which displayed a growth profile in vitro similar to that of wild-type (WT) parasites. C57BL/6 mice infected with Δisp2 displayed lower blood parasitemia, a delayed hind leg pathological phenotype and survived longer. The immune response was examined at two time-points that corresponded with two peaks of parasitemia. At 4 days, the spleens of Δisp2-infected mice had a greater percentage of NOS2+ myeloid cells, IFN-γ+-NK cells and increased TNF-α compared to those infected with WT and parasites re-expressing ISP2 (Δisp2:ISP2). By 13 days the increased NOS2+ population was sustained in Δisp2-infected mice, along with increased percentages of monocyte-derived dendritic cells, as well as CD19+ B lymphocytes, and CD8+ and CD4+ T lymphocytes. Taken together, these findings indicate that ISP2 contributes to T. b. rhodesiense virulence in mice and attenuates the inflammatory response during early infection.


Assuntos
Inibidores de Serino Proteinase/metabolismo , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/imunologia , Animais , Animais Geneticamente Modificados , Anticorpos Monoclonais , Feminino , Inflamação , Camundongos Endogâmicos C57BL , Inibidores de Serino Proteinase/genética , Baço/parasitologia , Virulência
18.
Sci Rep ; 11(1): 13475, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188079

RESUMO

The anti-inflammatory effects of the plant protease inhibitor BbCI (Bauhinia bauhinioides cruzipain inhibitor), which blocks elastase, cathepsin G, and L, and proteinase 3 has been demonstrated. Here, we investigated the recombinant rBbCI-His(6) (containing a histidine tail) in an experimental venous thrombosis model of vena cava (VC) ligature in rats, comparing to heparin. We evaluate the effects of the inhibitors (native or recombinant) or heparin on the activated partial thromboplastin time (aPTT) and prothrombin time (PT) in human and rat plasmas. The rats undergoing treatment received a saline solution or increasing concentrations of rBbCI-His(6), heparin, or a mixture of both. After 4 h of ligature VC, thrombus, if present was removed and weighed. aPTT, PT, and cytokines were measured in blood collected by cardiac puncture. aPTT, PT, and bleeding time (BT) were also measured at the time of VC (vena cava) ligature. rBbCI-His(6) (0.45 or 1.40 mg/kg) does not alter aPTT, PT or BT. No differences in coagulation parameters were detected in rBbCI-His(6) treated rats at the time of VC ligature or when the thrombus was removed. There was a significant decrease in the weight of thrombus in the animals of the groups treated with the rBbCI-His(6) (1.40 mg/kg), with the rBbCI-His(6) mixture (1.40 mg/kg) + heparin (50 IU/kg) and heparin (100 IU/kg) in relation to control group (saline). The growth-related oncogene/keratinocyte chemoattractant (GRO/KC) serum levels in rats treated with rBbCI-His(6) (1.40 mg/kg) or heparin (200 IU/kg) were reduced. In the experimental model used, rBbCI-His(6) alone had an antithrombotic effect, not altering blood clotting or bleeding time.


Assuntos
Bauhinia/enzimologia , Proteínas de Plantas/farmacologia , Inibidores de Serino Proteinase/farmacologia , Trombose , Animais , Bauhinia/genética , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Masculino , Elastase Pancreática/antagonistas & inibidores , Elastase Pancreática/sangue , Tempo de Tromboplastina Parcial , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Inibidores de Serino Proteinase/química , Inibidores de Serino Proteinase/genética , Trombose/sangue , Trombose/tratamento farmacológico
19.
Dev Biol ; 476: 148-170, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33826923

RESUMO

We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.


Assuntos
Adesão Celular/fisiologia , Proteínas Secretadas Inibidoras de Proteinases/genética , Inibidores de Serino Proteinase/metabolismo , Animais , Caderinas , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Epiderme/metabolismo , Células Epiteliais/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Organogênese , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Inibidores de Serino Proteinase/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
PLoS One ; 16(3): e0249266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780500

RESUMO

Here, we studied the expression pattern and putative function of four, previously identified serine protease inhibitors (serpins) of Myxobolus cerebralis, a pathogenic myxozoan species (Cnidaria: Myxozoa) causing whirling disease of salmonid fishes. The relative expression profiles of serpins were determined at different developmental stages both in fish and in annelid hosts using serpin-specific qPCR assays. The expression of serpin Mc-S1 was similar throughout the life cycle, whereas a significant decrease was detected in the relative expression of Mc-S3 and Mc-S5 during the development in fish, and then in the sporogonic stage in the worm host. A decreasing tendency could also be observed in the expression of Mc-S4 in fish, which was, however, upregulated in the worm host. For the first time, we predicted the function of M. cerebralis serpins by the use of several bioinformatics-based applications. Mc-S1 is putatively a chymotrypsin-like inhibitor that locates extracellularly and is capable of heparin binding. The other three serpins are caspase-like inhibitors, and they are probably involved in protease and cell degradation processes during the early stage of fish invasion.


Assuntos
Doenças dos Peixes/parasitologia , Perfilação da Expressão Gênica , Myxobolus/genética , Inibidores de Serino Proteinase/genética , Animais , Myxobolus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...